Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Sci Rep ; 13(1): 9161, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20245441

ABSTRACT

Proteases encoded by SARS-CoV-2 constitute a promising target for new therapies against COVID-19. SARS-CoV-2 main protease (Mpro, 3CLpro) and papain-like protease (PLpro) are responsible for viral polyprotein cleavage-a process crucial for viral survival and replication. Recently it was shown that 2-phenylbenzisoselenazol-3(2H)-one (ebselen), an organoselenium anti-inflammatory small-molecule drug, is a potent, covalent inhibitor of both the proteases and its potency was evaluated in enzymatic and antiviral assays. In this study, we screened a collection of 34 ebselen and ebselen diselenide derivatives for SARS-CoV-2 PLpro and Mpro inhibitors. Our studies revealed that ebselen derivatives are potent inhibitors of both the proteases. We identified three PLpro and four Mpro inhibitors superior to ebselen. Independently, ebselen was shown to inhibit the N7-methyltransferase activity of SARS-CoV-2 nsp14 protein involved in viral RNA cap modification. Hence, selected compounds were also evaluated as nsp14 inhibitors. In the second part of our work, we employed 11 ebselen analogues-bis(2-carbamoylaryl)phenyl diselenides-in biological assays to evaluate their anti-SARS-CoV-2 activity in Vero E6 cells. We present their antiviral and cytoprotective activity and also low cytotoxicity. Our work shows that ebselen, its derivatives, and diselenide analogues constitute a promising platform for development of new antivirals targeting the SARS-CoV-2 virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Methyltransferases , Peptide Hydrolases , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/pharmacology , Molecular Docking Simulation
2.
J Med Chem ; 66(12): 7785-7803, 2023 06 22.
Article in English | MEDLINE | ID: covidwho-20243008

ABSTRACT

An under-explored target for SARS-CoV-2 is the S-adenosyl methionine (SAM)-dependent methyltransferase Nsp14, which methylates the N7-guanosine of viral RNA at the 5'-end, allowing the virus to evade host immune response. We sought new Nsp14 inhibitors with three large library docking strategies. First, up to 1.1 billion lead-like molecules were docked against the enzyme's SAM site, leading to three inhibitors with IC50 values from 6 to 50 µM. Second, docking a library of 16 million fragments revealed 9 new inhibitors with IC50 values from 12 to 341 µM. Third, docking a library of 25 million electrophiles to covalently modify Cys387 revealed 7 inhibitors with IC50 values from 3.5 to 39 µM. Overall, 32 inhibitors encompassing 11 chemotypes had IC50 values < 50 µM and 5 inhibitors in 4 chemotypes had IC50 values < 10 µM. These molecules are among the first non-SAM-like inhibitors of Nsp14, providing starting points for future optimization.


Subject(s)
COVID-19 , Methyltransferases , Humans , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , RNA, Viral/genetics , Exoribonucleases
3.
Eur J Med Chem ; 256: 115474, 2023 Aug 05.
Article in English | MEDLINE | ID: covidwho-2315252

ABSTRACT

The COVID-19 pandemic reveals the urgent need to develop new therapeutics targeting the SARS-CoV-2 replication machinery. The first antiviral drugs were nucleoside analogues targeting RdRp and protease inhibitors active on nsp5 Mpro. In addition to these common antiviral targets, SARS-CoV-2 codes for the highly conserved protein nsp14 harbouring N7-methyltransferase (MTase) activity. Nsp14 is involved in cap N7-methylation of viral RNA and its inhibition impairs viral RNA translation and immune evasion, making it an attractive new antiviral target. In this work, we followed a structure-guided drug design approach to design bisubstrates mimicking the S-adenosylmethionine methyl donor and RNA cap. We developed adenosine mimetics with an N-arylsulfonamide moiety in the 5'-position, recently described as a guanine mimicking the cap structure in a potent adenosine-derived nsp14 inhibitor. Here, the adenine moiety was replaced by hypoxanthine, N6-methyladenine, or C7-substituted 7-deaza-adenine. 26 novel adenosine mimetics were synthesized, one of which selectively inhibits nsp14 N7-MTase activity with a subnanomolar IC50 (and seven with a single-digit nanomolar IC50). In the most potent inhibitors, adenine was replaced by two different 7-deaza-adenines bearing either a phenyl or a 3-quinoline group at the C7-position via an ethynyl linker. These more complex compounds are barely active on the cognate human N7-MTase and docking experiments reveal that their selectivity of inhibition might result from the positioning of their C7 substitution in a SAM entry tunnel present in the nsp14 structure and absent in the hN7-MTase. These compounds show moderate antiviral activity against SARS-CoV-2 replication in cell culture, suggesting delivery or stability issue.


Subject(s)
COVID-19 , Methyltransferases , Humans , Methyltransferases/metabolism , Adenosine/pharmacology , Pandemics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology , S-Adenosylmethionine , RNA, Viral/genetics , Adenine
4.
Nat Commun ; 14(1): 2259, 2023 04 20.
Article in English | MEDLINE | ID: covidwho-2303778

ABSTRACT

Monkeypox is a disease with pandemic potential. It is caused by the monkeypox virus (MPXV), a double-stranded DNA virus from the Poxviridae family, that replicates in the cytoplasm and must encode for its own RNA processing machinery including the capping machinery. Here, we present crystal structures of its 2'-O-RNA methyltransferase (MTase) VP39 in complex with the pan-MTase inhibitor sinefungin and a series of inhibitors that were discovered based on it. A comparison of this 2'-O-RNA MTase with enzymes from unrelated single-stranded RNA viruses (SARS-CoV-2 and Zika) reveals a conserved sinefungin binding mode, implicating that a single inhibitor could be used against unrelated viral families. Indeed, several of our inhibitors such as TO507 also inhibit the coronaviral nsp14 MTase.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , Methyltransferases/metabolism , SARS-CoV-2/genetics , Monkeypox virus/genetics , Monkeypox virus/metabolism , Viral Nonstructural Proteins/chemistry , RNA , Zika Virus/genetics , RNA, Viral/genetics
5.
Emerg Microbes Infect ; 12(1): 2204164, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2303029

ABSTRACT

SARS-CoV-2 has caused a global pandemic with significant humanity and economic loss since 2020. Currently, only limited options are available to treat SARS-CoV-2 infections for vulnerable populations. In this study, we report a universal fluorescence polarization (FP)-based high throughput screening (HTS) assay for SAM-dependent viral methyltransferases (MTases), using a fluorescent SAM-analogue, FL-NAH. We performed the assay against a reference MTase, NSP14, an essential enzyme for SARS-CoV-2 to methylate the N7 position of viral 5'-RNA guanine cap. The assay is universal and suitable for any SAM-dependent viral MTases such as the SARS-CoV-2 NSP16/NSP10 MTase complex and the NS5 MTase of Zika virus (ZIKV). Pilot screening demonstrated that the HTS assay was very robust and identified two candidate inhibitors, NSC 111552 and 288387. The two compounds inhibited the FL-NAH binding to the NSP14 MTase with low micromolar IC50. We used three functional MTase assays to unambiguously verified the inhibitory potency of these molecules for the NSP14 N7-MTase function. Binding studies indicated that these molecules are bound directly to the NSP14 MTase with similar low micromolar affinity. Moreover, we further demonstrated that these molecules significantly inhibited the SARS-CoV-2 replication in cell-based assays at concentrations not causing cytotoxicity. Furthermore, NSC111552 significantly synergized with known SARS-CoV-2 drugs including nirmatrelvir and remdesivir. Finally, docking suggested that these molecules bind specifically to the SAM-binding site on the NSP14 MTase. Overall, these molecules represent novel and promising candidates to further develop broad-spectrum inhibitors for the management of viral infections.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , SARS-CoV-2/genetics , High-Throughput Screening Assays , Viral Nonstructural Proteins/metabolism , Zika Virus/genetics , Zika Virus/metabolism , Binding Sites , RNA Caps/chemistry , RNA Caps/genetics , RNA Caps/metabolism , Fluorescence Polarization , RNA, Viral/genetics
6.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2306639

ABSTRACT

Targeting RNA methyltransferases with small molecules as inhibitors or tool compounds is an emerging field of interest in epitranscriptomics and medicinal chemistry. For two challenging RNA methyltransferases that introduce the 5-methylcytosine (m5C) modification in different tRNAs, namely DNMT2 and NSUN6, an ultra-large commercially available chemical space was virtually screened by physicochemical property filtering, molecular docking, and clustering to identify new ligands for those enzymes. Novel chemotypes binding to DNMT2 and NSUN6 with affinities down to KD,app = 37 µM and KD,app = 12 µM, respectively, were identified using a microscale thermophoresis (MST) binding assay. These compounds represent the first molecules with a distinct structure from the cofactor SAM and have the potential to be developed into activity-based probes for these enzymes. Additionally, the challenges and strategies of chemical space docking screens with special emphasis on library focusing and diversification are discussed.


Subject(s)
Methyltransferases , RNA , Molecular Docking Simulation , RNA, Transfer/chemistry , DNA (Cytosine-5-)-Methyltransferases , tRNA Methyltransferases
7.
Genome Res ; 33(3): 299-313, 2023 03.
Article in English | MEDLINE | ID: covidwho-2285021

ABSTRACT

Insights into host-virus interactions during SARS-CoV-2 infection are needed to understand COVID-19 pathogenesis and may help to guide the design of novel antiviral therapeutics. N 6-Methyladenosine modification (m6A), one of the most abundant cellular RNA modifications, regulates key processes in RNA metabolism during stress response. Gene expression profiles observed postinfection with different SARS-CoV-2 variants show changes in the expression of genes related to RNA catabolism, including m6A readers and erasers. We found that infection with SARS-CoV-2 variants causes a loss of m6A in cellular RNAs, whereas m6A is detected abundantly in viral RNA. METTL3, the m6A methyltransferase, shows an unusual cytoplasmic localization postinfection. The B.1.351 variant has a less-pronounced effect on METTL3 localization and loss of m6A than did the B.1 and B.1.1.7 variants. We also observed a loss of m6A upon SARS-CoV-2 infection in air/liquid interface cultures of human airway epithelia, confirming that m6A loss is characteristic of SARS-CoV-2-infected cells. Further, transcripts with m6A modification are preferentially down-regulated postinfection. Inhibition of the export protein XPO1 results in the restoration of METTL3 localization, recovery of m6A on cellular RNA, and increased mRNA expression. Stress granule formation, which is compromised by SARS-CoV-2 infection, is restored by XPO1 inhibition and accompanied by a reduced viral infection in vitro. Together, our study elucidates how SARS-CoV-2 inhibits the stress response and perturbs cellular gene expression in an m6A-dependent manner.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Methylation , RNA , RNA, Viral/genetics , Methyltransferases/genetics
8.
Biomolecules ; 12(9)2022 09 06.
Article in English | MEDLINE | ID: covidwho-2273374

ABSTRACT

Many viruses from the realm Riboviria infecting eukaryotic hosts encode protein domains with sequence similarity to S-adenosylmethionine-dependent methyltransferases. These protein domains are thought to be involved in methylation of the 5'-terminal cap structures in virus mRNAs. Some methyltransferase-like domains of Riboviria are homologous to the widespread cellular FtsJ/RrmJ-like methyltransferases involved in modification of cellular RNAs; other methyltransferases, found in a subset of positive-strand RNA viruses, have been assigned to a separate "Sindbis-like" family; and coronavirus-specific Nsp13/14-like methyltransferases appeared to be different from both those classes. The representative structures of proteins from all three groups belong to a specific variety of the Rossmann fold with a seven-stranded ß-sheet, but it was unclear whether this structural similarity extends to the level of conserved sequence signatures. Here I survey methyltransferases in Riboviria and derive a joint sequence alignment model that covers all groups of virus methyltransferases and subsumes the previously defined conserved sequence motifs. Analysis of the spatial structures indicates that two highly conserved residues, a lysine and an aspartate, frequently contact a water molecule, which is located in the enzyme active center next to the methyl group of S-adenosylmethionine cofactor and could play a key role in the catalytic mechanism of the enzyme. Phylogenetic evidence indicates a likely origin of all methyltransferases of Riboviria from cellular RrmJ-like enzymes and their rapid divergence with infrequent horizontal transfer between distantly related viruses.


Subject(s)
Methyltransferases , S-Adenosylmethionine , Amino Acid Sequence , Aspartic Acid , Lysine/genetics , Methyltransferases/metabolism , Phylogeny , S-Adenosylmethionine/metabolism , Water
9.
Diabet Med ; 40(1): e15023, 2023 01.
Article in English | MEDLINE | ID: covidwho-2243903

Subject(s)
Methyltransferases , Humans
10.
Biochim Biophys Acta Gen Subj ; 1867(4): 130319, 2023 04.
Article in English | MEDLINE | ID: covidwho-2232428

ABSTRACT

Seven coronaviruses have infected humans (HCoVs) to-date. SARS-CoV-2 caused the current COVID-19 pandemic with the well-known high mortality and severe socioeconomic consequences. MERS-CoV and SARS-CoV caused epidemic of MERS and SARS, respectively, with severe respiratory symptoms and significant fatality. However, HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43 cause respiratory illnesses with less severe symptoms in most cases. All coronaviruses use RNA capping to evade the immune systems of humans. Two viral methyltransferases, nsp14 and nsp16, play key roles in RNA capping and are considered valuable targets for development of anti-coronavirus therapeutics. But little is known about the kinetics of nsp10-nsp16 methyltransferase activities of most HCoVs, and reliable assays for screening are not available. Here, we report the expression, purification, and kinetic characterization of nsp10-nsp16 complexes from six HCoVs in parallel with previously characterized SARS-CoV-2. Probing the active sites of all seven by SS148 and WZ16, the two recently reported dual nsp14 / nsp10-nsp16 inhibitors, revealed pan-inhibition. Overall, our study show feasibility of developing broad-spectrum dual nsp14 / nsp10-nsp16-inhibitor therapeutics.


Subject(s)
COVID-19 , Humans , Methyltransferases/chemistry , Pandemics , RNA , SARS-CoV-2/genetics
11.
J Virol ; 97(2): e0153222, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2223571

ABSTRACT

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'-O-methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'-O-MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo, using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive than wild-type SARS-CoV-2 to type I interferon (IFN-I) in vitro. Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'-O-methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, an MTase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment and attenuates viral replication. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a target for future antiviral therapies. IMPORTANCE Similar to other coronaviruses, disruption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo, our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1 but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'-O-methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.


Subject(s)
Adaptor Proteins, Signal Transducing , Intracellular Signaling Peptides and Proteins , SARS-CoV-2 , Viral Nonstructural Proteins , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , COVID-19/virology , Interferon Type I/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Methyltransferases/metabolism , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Nonstructural Proteins/metabolism , Animals , Cricetinae
12.
Sci Rep ; 13(1): 350, 2023 01 07.
Article in English | MEDLINE | ID: covidwho-2186047

ABSTRACT

In recent years, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as the cause of the coronavirus disease (COVID-19) global pandemic, and its variants, especially those with higher transmissibility and substantial immune evasion, have highlighted the imperative for developing novel therapeutics as sustainable solutions other than vaccination to combat coronaviruses (CoVs). Beside receptor recognition and virus entry, members of the SARS-CoV-2 replication/transcription complex are promising targets for designing antivirals. Here, the interacting residues that mediate protein-protein interactions (PPIs) of nsp10 with nsp16 and nsp14 were comprehensively analyzed, and the key residues' interaction maps, interaction energies, structural networks, and dynamics were investigated. Nsp10 stimulates both nsp14's exoribonuclease (ExoN) and nsp16's 2'O-methyltransferase (2'O-MTase). Nsp14 ExoN is an RNA proofreading enzyme that supports replication fidelity. Nsp16 2'O-MTase is responsible for the completion of RNA capping to ensure efficient replication and translation and escape from the host cell's innate immune system. The results of the PPIs analysis proposed crucial information with implications for designing SARS-CoV-2 antiviral drugs. Based on the predicted shared protein-protein interfaces of the nsp16-nsp10 and nsp14-nsp10 interactions, a set of dual-target peptide inhibitors was designed. The designed peptides were evaluated by molecular docking, peptide-protein interaction analysis, and free energy calculations, and then further optimized by in silico saturation mutagenesis. Based on the predicted evolutionary conservation of the interacted target residues among CoVs, the designed peptides have the potential to be developed as dual target pan-coronavirus inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Molecular Docking Simulation , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry , Virus Replication/genetics , Methyltransferases/genetics , Peptides/pharmacology , Antiviral Agents/pharmacology , RNA/pharmacology , Exoribonucleases/genetics , Exoribonucleases/chemistry
13.
Nucleic Acids Res ; 51(1): 475-487, 2023 01 11.
Article in English | MEDLINE | ID: covidwho-2189415

ABSTRACT

NSP14 is a dual function enzyme containing an N-terminal exonuclease domain (ExoN) and C-terminal Guanine-N7-methyltransferase (N7-MTase) domain. Both activities are essential for the viral life cycle and may be targeted for anti-viral therapeutics. NSP14 forms a complex with NSP10, and this interaction enhances the nuclease but not the methyltransferase activity. We have determined the structure of SARS-CoV-2 NSP14 in the absence of NSP10 to 1.7 Å resolution. Comparisons with NSP14/NSP10 complexes reveal significant conformational changes that occur within the NSP14 ExoN domain upon binding of NSP10, including helix to coil transitions that facilitate the formation of the ExoN active site and provide an explanation of the stimulation of nuclease activity by NSP10. We have determined the structure of NSP14 in complex with cap analogue 7MeGpppG, and observe conformational changes within a SAM/SAH interacting loop that plays a key role in viral mRNA capping offering new insights into MTase activity. We perform an X-ray fragment screen on NSP14, revealing 72 hits bound to sites of inhibition in the ExoN and MTase domains. These fragments serve as excellent starting point tools for structure guided development of NSP14 inhibitors that may be used to treat COVID-19 and potentially other future viral threats.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Messenger , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Exoribonucleases/metabolism , Viral Nonstructural Proteins/metabolism , Methyltransferases/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism
14.
Molecules ; 28(2)2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2200546

ABSTRACT

SARS-CoV-2 nsp14 guanine-N7-methyltransferase plays an important role in the viral RNA translation process by catalyzing the transfer of a methyl group from S-adenosyl-methionine (SAM) to viral mRNA cap. We report a structure-guided design and synthesis of 3-(adenosylthio)benzoic acid derivatives as nsp14 methyltransferase inhibitors resulting in compound 5p with subnanomolar inhibitory activity and improved cell membrane permeability in comparison with the parent inhibitor. Compound 5p acts as a bisubstrate inhibitor targeting both SAM and mRNA-binding pockets of nsp14. While the selectivity of 3-(adenosylthio)benzoic acid derivatives against human glycine N-methyltransferase was not improved, the discovery of phenyl-substituted analogs 5p,t may contribute to further development of SARS-CoV-2 nsp14 bisubstrate inhibitors.


Subject(s)
Antiviral Agents , Methyltransferases , SARS-CoV-2 , Methylation , Methyltransferases/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Viral/genetics , S-Adenosylmethionine/chemistry , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology
15.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: covidwho-2155138

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious and pathogenic coronavirus that emerged in late 2019 and caused a pandemic of respiratory illness termed as coronavirus disease 2019 (COVID-19). Cancer patients are more susceptible to SARS-CoV-2 infection. The treatment of cancer patients infected with SARS-CoV-2 is more complicated, and the patients are at risk of poor prognosis compared to other populations. Patients infected with SARS-CoV-2 are prone to rapid development of acute respiratory distress syndrome (ARDS) of which pulmonary fibrosis (PF) is considered a sequelae. Both ARDS and PF are factors that contribute to poor prognosis in COVID-19 patients. However, the molecular mechanisms among COVID-19, ARDS and PF in COVID-19 patients with cancer are not well-understood. In this study, the common differentially expressed genes (DEGs) between COVID-19 patients with and without cancer were identified. Based on the common DEGs, a series of analyses were performed, including Gene Ontology (GO) and pathway analysis, protein-protein interaction (PPI) network construction and hub gene extraction, transcription factor (TF)-DEG regulatory network construction, TF-DEG-miRNA coregulatory network construction and drug molecule identification. The candidate drug molecules (e.g., Tamibarotene CTD 00002527) obtained by this study might be helpful for effective therapeutic targets in COVID-19 patients with cancer. In addition, the common DEGs among ARDS, PF and COVID-19 patients with and without cancer are TNFSF10 and IFITM2. These two genes may serve as potential therapeutic targets in the treatment of COVID-19 patients with cancer. Changes in the expression levels of TNFSF10 and IFITM2 in CD14+/CD16+ monocytes may affect the immune response of COVID-19 patients. Specifically, changes in the expression level of TNFSF10 in monocytes can be considered as an immune signature in COVID-19 patients with hematologic cancer. Targeting N6-methyladenosine (m6A) pathways (e.g., METTL3/SERPINA1 axis) to restrict SARS-CoV-2 reproduction has therapeutic potential for COVID-19 patients.


Subject(s)
COVID-19 , Neoplasms , Pulmonary Fibrosis , Respiratory Distress Syndrome , Humans , COVID-19/complications , COVID-19/genetics , Lung/pathology , Membrane Proteins/metabolism , Methyltransferases/metabolism , Neoplasms/complications , Neoplasms/genetics , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , RNA-Seq , SARS-CoV-2 , Single-Cell Gene Expression Analysis , Transcription Factors/metabolism
16.
PLoS One ; 17(11): e0274343, 2022.
Article in English | MEDLINE | ID: covidwho-2140515

ABSTRACT

The fast rate of viral mutations of SARS CoV-2 result in decrease in the efficacy of the vaccines that have been developed before the emergence of these mutations. Thus, it is believed that using additional measures to combat the virus is not only advisable but also beneficial. Two antiviral drugs were authorized for emergency use by the FDA, namely Pfizer's two-drug regimen sold under the brand name Paxlovid, and Merck's drug Lagevrio. Pfizer's two-drug combination consists of nirmatrelvir, a protease inhibitor that blocks coronavirus ability to multiply and another antiviral, ritonavir, that lowers the rate of drug clearance to boost the longevity and activity of the protease inhibitor. Merck's drug Lagevrio (molnupiravir) is a nucleoside analogue with a mechanism of action that aims to introduce errors into the genetic code of the virus. We believe the armament against the virus can be augmented by the addition of another class of enzyme inhibitors that are required for viral survival and its ability to replicate. Enzymes like nsp14 and nsp10/16 methyltransferases (MTases) represent another class of drug targets since they are required for viral RNA translation and evading the host immune system. In this communication, we have successfully verified that the MTase-Glo, which is universal and homogeneous MTase assay can be used to screen for inhibitors of the two pivotal enzymes nsp14 and nsp16 of SARS CoV-2. Furthermore, we have carried out extensive studies on those enzymes using different RNA substrates and tested their activity using various inhibitors and verified the utility of this assay for use in drug screening programs. We anticipate our work will be pursued further to screen for large libraries to discover new and selective inhibitors for the viral enzymes particularly that these enzymes are structurally different from their mammalian counterparts.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , SARS-CoV-2/genetics , Methyltransferases/genetics , Antiviral Agents/pharmacology , Protease Inhibitors , RNA, Viral , Luminescent Measurements , Mammals
17.
Int J Mol Sci ; 23(22)2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2110135

ABSTRACT

Methyltransferases (MTases) enzymes, responsible for RNA capping into severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are emerging important targets for the design of new anti-SARS-CoV-2 agents. Here, analogs of S-adenosylmethionine (SAM), obtained from the bioisosteric substitution of the sulfonium and amino acid groups, were evaluated by rigorous computational modeling techniques such as molecular dynamics (MD) simulations followed by relative binding free analysis against nsp16/nsp10 complex from SARS-CoV-2. The most potent inhibitor (2a) shows the lowest binding free energy (-58.75 Kcal/mol) and more potency than Sinefungin (SFG) (-39.8 Kcal/mol), a pan-MTase inhibitor, which agrees with experimental observations. Besides, our results suggest that the total binding free energy of each evaluated SAM analog is driven by van der Waals interactions which can explain their poor cell permeability, as observed in experimental essays. Overall, we provide a structural and energetic analysis for the inhibition of the nsp16/nsp10 complex involving the evaluated SAM analogs as potential inhibitors.


Subject(s)
COVID-19 Drug Treatment , S-Adenosylmethionine , Humans , S-Adenosylmethionine/pharmacology , S-Adenosylmethionine/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism , Methyltransferases/metabolism
18.
ACS Synth Biol ; 11(11): 3759-3771, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2106357

ABSTRACT

Essential viral enzymes have been successfully targeted to combat the diseases caused by emerging pathogenic RNA viruses (e.g., viral RNA-dependent RNA polymerase). Because of the conserved nature of such viral enzymes, therapeutics targeting these enzymes have the potential to be repurposed to combat emerging diseases, e.g., remdesivir, which was initially developed as a potential Ebola treatment, then was repurposed for COVID-19. Our efforts described in this study target another essential and highly conserved, but relatively less explored, step in RNA virus translation and replication, i.e., capping of the viral RNA genome. The viral genome cap structure disguises the genome of most RNA viruses to resemble the mRNA cap structure of their host and is essential for viral translation, propagation, and immune evasion. Here, we developed a synthetic, phenotypic yeast-based complementation platform (YeRC0M) for molecular characterization and targeting of SARS-CoV-2 genome-encoded RNA cap-0 (guanine-N7)-methyltransferase (N7-MTase) enzyme (nsp14). In YeRC0M, the lack of yeast mRNA capping N7-MTase in yeast, which is an essential gene in yeast, is complemented by the expression of functional viral N7-MTase or its variants. Using YeRC0M, we first identified important protein domains and amino acid residues that are essential for SARS-CoV-2 nsp14 N7-MTase activity. We also expanded YeRC0M to include key nsp14 variants observed in emerging variants of SARS-CoV-2 (e.g., delta variant of SARS-CoV-2 encodes nsp14 A394V and nsp14 P46L). We also combined YeRC0M with directed evolution to identify attenuation mutations in SARS-CoV-2 nsp14. Because of the high sequence similarity of nsp14 in emerging coronaviruses, these observations could have implications on live attenuated vaccine development strategies. These data taken together reveal key domains in SARS-CoV-2 nsp14 that can be targeted for therapeutic strategies. We also anticipate that these readily tractable phenotypic platforms can also be used for the identification of inhibitors of viral RNA capping enzymes as antivirals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Saccharomyces cerevisiae/genetics , Methyltransferases/metabolism , RNA, Messenger
19.
J Virol ; 96(22): e0099722, 2022 11 23.
Article in English | MEDLINE | ID: covidwho-2097918

ABSTRACT

Modification of the hepatitis C virus (HCV) positive-strand RNA genome by N6-methyladenosine (m6A) regulates the viral life cycle. This life cycle takes place solely in the cytoplasm, while m6A addition on cellular mRNA takes place in the nucleus. Thus, the mechanisms by which m6A is deposited on the viral RNA have been unclear. In this work, we find that m6A modification of HCV RNA by the m6A-methyltransferase proteins methyltransferase-like 3 and 14 (METTL3 and METTL14) is regulated by Wilms' tumor 1-associating protein (WTAP). WTAP, a predominantly nuclear protein, is an essential member of the cellular mRNA m6A-methyltransferase complex and known to target METTL3 to mRNA. We found that HCV infection induces localization of WTAP to the cytoplasm. Importantly, we found that WTAP is required for both METTL3 interaction with HCV RNA and m6A modification across the viral RNA genome. Further, we found that WTAP, like METTL3 and METTL14, negatively regulates the production of infectious HCV virions, a process that we have previously shown is regulated by m6A. Excitingly, WTAP regulation of both HCV RNA m6A modification and virion production was independent of its ability to localize to the nucleus. Together, these results reveal that WTAP is critical for HCV RNA m6A modification by METTL3 and METTL14 in the cytoplasm. IMPORTANCE Positive-strand RNA viruses such as HCV represent a significant global health burden. Previous work has described that HCV RNA contains the RNA modification m6A and how this modification regulates viral infection. Yet, how this modification is targeted to HCV RNA has remained unclear due to the incompatibility of the nuclear cellular processes that drive m6A modification with the cytoplasmic HCV life cycle. In this study, we present evidence for how m6A modification is targeted to HCV RNA in the cytoplasm by a mechanism in which WTAP recruits the m6A-methyltransferase METTL3 to HCV RNA. This targeting strategy for m6A modification of cytoplasmic RNA viruses is likely relevant for other m6A-modified positive-strand RNA viruses with cytoplasmic life cycles such as enterovirus 71 and SARS-CoV-2 and provides an exciting new target for potential antiviral therapies.


Subject(s)
Cell Cycle Proteins , Hepatitis C , Methyltransferases , RNA Splicing Factors , Humans , Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , Hepacivirus/genetics , Hepacivirus/metabolism , Hepatitis C/genetics , Hepatitis C/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , RNA Splicing Factors/metabolism , RNA, Messenger/genetics , RNA, Viral/genetics , RNA, Viral/metabolism
20.
Viruses ; 14(10)2022 10 16.
Article in English | MEDLINE | ID: covidwho-2071840

ABSTRACT

Host-virus protein interactions are critical for intracellular viral propagation. Understanding the interactions between cellular and viral proteins may help us develop new antiviral strategies. Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe damage to the global swine industry. Here, we employed co-immunoprecipitation and liquid chromatography-mass spectrometry to characterize 426 unique PEDV nucleocapsid (N) protein-binding proteins in infected Vero cells. A protein-protein interaction network (PPI) was created, and gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses revealed that the PEDV N-bound proteins belong to different cellular pathways, such as nucleic acid binding, ribonucleoprotein complex binding, RNA methyltransferase, and polymerase activities. Interactions of the PEDV N protein with 11 putative proteins: tripartite motif containing 21, DEAD-box RNA helicase 24, G3BP stress granule assembly factor 1, heat shock protein family A member 8, heat shock protein 90 alpha family class B member 1, YTH domain containing 1, nucleolin, Y-box binding protein 1, vimentin, heterogeneous nuclear ribonucleoprotein A2/B1, and karyopherin subunit alpha 1, were further confirmed by in vitro co-immunoprecipitation assay. In summary, studying an interaction network can facilitate the identification of antiviral therapeutic strategies and novel targets for PEDV infection.


Subject(s)
Coronavirus Infections , Nucleic Acids , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Swine , Animals , Porcine epidemic diarrhea virus/genetics , Vimentin/metabolism , Vero Cells , Nucleocapsid/metabolism , Nucleocapsid Proteins/genetics , Viral Proteins/metabolism , Coronavirus Infections/metabolism , Antiviral Agents/metabolism , RNA/metabolism , Heat-Shock Proteins/metabolism , Methyltransferases/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , DEAD-box RNA Helicases/metabolism , Ribonucleoproteins/metabolism , Karyopherins/metabolism , Nucleic Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL